Sign-Changing Bubble Tower Solutions for Sinh-Poisson Type Equations on Pierced Domains
نویسندگان
چکیده
منابع مشابه
Sign-changing Bubble Towers for Asymptotically Critical Elliptic Equations on Riemannian Manifolds
Given a smooth compact Riemannian n–manifold (M, g), we consider the equation ∆gu+ hu = |u| ∗−2−ε u, where h is a C–function on M , the exponent 2∗ := 2n/ (n− 2) is the critical Sobolev exponent, and ε is a small positive real parameter such that ε→ 0. We prove the existence of blowing-up families of sign-changing solutions which develop bubble towers at some point where the function h is great...
متن کاملMultiple Sign-changing Solutions for Kirchhoff Type Problems
This article concerns the existence of sign-changing solutions to nonlocal Kirchhoff type problems of the form
متن کاملMultiple Positive Solutions for a Class of Concave-Convex Semilinear Elliptic Equations in Unbounded Domains with Sign-Changing Weights
Correspondence should be addressed to Tsing-San Hsu, [email protected] Received 8 September 2010; Accepted 18 October 2010 Academic Editor: Julio Rossi Copyright q 2010 Tsing-San Hsu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly c...
متن کاملInfinitely Many Solutions for Fractional Schrödinger-poisson Systems with Sign-changing Potential
In this article, we prove the existence of multiple solutions for following fractional Schrödinger-Poisson system with sign-changing potential (−∆)u+ V (x)u+ λφu = f(x, u), x ∈ R, (−∆)φ = u, x ∈ R, where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1), and the potential V is allowed to be sign-changing. Under certain assumptions on f , we obtain infinitely many solutions for this sys...
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2023
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.4354199