Sign-Changing Bubble Tower Solutions for Sinh-Poisson Type Equations on Pierced Domains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign-changing Bubble Towers for Asymptotically Critical Elliptic Equations on Riemannian Manifolds

Given a smooth compact Riemannian n–manifold (M, g), we consider the equation ∆gu+ hu = |u| ∗−2−ε u, where h is a C–function on M , the exponent 2∗ := 2n/ (n− 2) is the critical Sobolev exponent, and ε is a small positive real parameter such that ε→ 0. We prove the existence of blowing-up families of sign-changing solutions which develop bubble towers at some point where the function h is great...

متن کامل

Multiple Sign-changing Solutions for Kirchhoff Type Problems

This article concerns the existence of sign-changing solutions to nonlocal Kirchhoff type problems of the form

متن کامل

Multiple Positive Solutions for a Class of Concave-Convex Semilinear Elliptic Equations in Unbounded Domains with Sign-Changing Weights

Correspondence should be addressed to Tsing-San Hsu, [email protected] Received 8 September 2010; Accepted 18 October 2010 Academic Editor: Julio Rossi Copyright q 2010 Tsing-San Hsu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly c...

متن کامل

Infinitely Many Solutions for Fractional Schrödinger-poisson Systems with Sign-changing Potential

In this article, we prove the existence of multiple solutions for following fractional Schrödinger-Poisson system with sign-changing potential (−∆)u+ V (x)u+ λφu = f(x, u), x ∈ R, (−∆)φ = u, x ∈ R, where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1), and the potential V is allowed to be sign-changing. Under certain assumptions on f , we obtain infinitely many solutions for this sys...

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2023

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4354199